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Abstract-This paper describes the GeoLearn system 
for preparing remote sensing datasets. Three applications 
are given for analyses using collections of remote sensing 
data for modeling. The Blue Ridge ecoregion is used as 
the first area for understanding the influences on 
greenness indices. The scale of analysis is greatly 
increased by considering a similar approach using data 
from the entire continental United States. Finally, 
clustering algorithms are applied to various land surface 
variables to look for simple relationships. 
 

I. INTRODUCTION 
 

This research revolves around processing and 
analyzing remotely sensed land surface variables. We 
briefly review the capabilities of the data processing 
tools that we have developed and then discuss several 
investigations that apply data-driven modeling 
techniques to discover relationships between 
topography, climate, soil properties, and vegetation 
indices. 

Understanding these relationships requires 
assembling data at regional and continental scales. 
This in turn requires the ability to handle very large 
volumes of data that are dynamically evolving such as 
weather, emissivity, vegetation, as well as static 

features of the landscape. Models based on 
investigations of these data will improve our 
understanding of how the variables evolve and 
influence one another. The benefits may also extend 
into other areas since the models could be employed to 
refine the approximations in landscape and climate 
simulation models. 

 
II. THE GEOLEARN WIZARD 

 
One of the primary challenges in this type of 

research is dealing with disparate kinds of data. There 
is a large volume of georeferenced data, but each 
dataset is potentially recorded in its own projection and 
resolution (both temporal and spatial) with or without 
information about data quality, and in a variety of 
formats. We are developing the GeoLearn wizard as a 
software tool to streamline the process of dealing with 
the challenges of bringing these data together with a 
special emphasis on handling the remote sensing data 
sets collected by the MODIS instruments on the 
TERRA and AQUA platforms. 

The GeoLearn wizard forms a graphical interface 
that employs tools from the Im2Learn image and GIS 
package developed by the ISDA group at NCSA 



(http://isda.ncsa.uiuc.edu/Im2Learn/doc/) along with 
other tools in ESRI’s ArcGIS Engine 
(http://www.esri.com/software/arcgis/arcgisengine/). 
The general architecture is shown in Fig. 1 and the 
approach to processing the data is shown in Fig. 2. 

The first major function of GeoLearn is to ingest 
the raw raster data and perform several preprocessing 
steps. These include the obvious needs for spatial and 
temporal resolution adjustments to match up datasets 
on different grids and time intervals; reprojecting data 
onto a common map projection; and mosaicking 
multiple tiles into a single maps. One of the more 
novel capabilities is the ability to use the Quality 
Assurance/Quality Control information provided with 
the MODIS products to mask off unwanted data such 
as water, ice, and snow or cloud and shadow 
influenced measurements. Similarly, GeoLearn allows 
vector data designating polygons to be loaded, 
reprojected, and layed over the raster data. These 
polygons can be selected and used to create another 
mask for selecting only the pixels within their 
boundaries. This allows the user to restrict the final 
dataset to a limited geographic area, e.g., particular 
states or ecoregions. 

The second major function of GeoLearn is to 
convert the processed data (now on a common 
grid/projection/time-scale with undesired data masked 
off) into data structures ready for empirical modelling. 
This can take a couple of forms. The most easily 
employed is the D2K Table which is a tabular data 
structure that is ready for use within NCSA’s 
Data2Knowledge (D2K) datamining environment 
(http://alg.ncsa.uiuc.edu/do/tools/d2k/). D2K has a 
wide variety of knowledge discovery algorithms 
already prepared and coded. GeoLearn is set up to be 
able to easily access these algorithms for exploring and 
modeling the constructed dataset. The data can also be 
exported as binary files for later use. 

Finally, for a few algorithms, GeoLearn provides 
seamless visualization of the results of predictive 
models. For example, a regression tree algorithm is 
implemented and GeoLearn can visualize maps of 
predicted values and errors for different levels of the 
tree. Additionally, it provides some graphical 
interpretation aids such as showing which variables are 
most important for the model at each location. 

Fig. 2.  Workflow showing the approach to processing the data. 
 Fig. 1. Diagram showing the general architecture of GeoLearn. 

 

 
III. INITIAL APPLICATION: PREDICTIVE MODEL OF 

BLUE RIDGE (LEVEL III) ECOSYSTEM 
 
The Blue Ridge Ecosystem provided an initial 

region in which to investigate the dominant influences 
on vegetation indices. For a more detailed description 
of this portion of the research, see [1]. The Blue Ridge 
is a primarily forested mountainous area in the 
Appalachian Mountains of the eastern United States.  
The ecosystem  is one of the most biologically diverse 
temperate broadleaf forests in the world, covering an 
area of about 46,600 square kilometers with a variety 
of geologic features stretching from Georgia to 
Pennsylvania. 

The vegetation index analyzed was the Enhanced 
Vegetation Index (EVI) from the MODIS Terra for 
April to September, 2000 to 2004. For each 250 meter 
pixel in the Blue Ridge region, a single EVI value was 
computed for each month by taking the mean of all the 
16-day maximum composite values within the month 
for all five years. This provides six maps of average 
EVI disaggregated by month. 

Several types of explanatory variables were 
assembled. By using the explanatory variables to 
predict the EVI values and examining the model and 
its predictions, we can learn which variables are more 
and less important in influencing the vegetation index. 

The first type of variables were land cover indicator 
variables which encoded the presence (value = 1) or 
absence (value = 0) of categories from the USGS 
National Land Cover Dataset. Some categories were 



excluded from the analysis: water, urban areas, bare 
rocks, etc. Three of the ten categories accounted for 
the vast majority of the land cover: deciduous forest 
and evergreen forest along with some pasture/hay.  

Second, several topographic attributes were 
included. These included elevation and its derivatives  
slope and aspect (the direction the slope is facing). In 
addition, two variables reflecting water availability 
were constructed: the compound topographic index 
(CTI) based on the slope and upstream contributing 
area, and the distance to the nearest stream. 

A collection of soil properties comprised the third 
group of variables. Many of these were thickness-
averaged over all soil layers, when applicable. The 
particular properties were: percent sand, silt and clay, 
permeability, total bulk density, pH, percent available 
water capacity, and depth to bedrock. 

The final group of variables were meteorological: 
unfrozen precipitation, incoming short and longwave 
radiation flux, and day- and night-time temperatures. 
Each variable was averaged over the days in each 
month to produce a single value for each month. 

The data were analyzed by training binary 
regression trees to predict the EVI based on the 
explanatory variables which were resampled to have 
the same resolution as the EVI map. A regression tree 
was trained for each month. 

A regression tree is a type of model for continuous 
functions based on the idea of building a parsimonious 
piece-wise constant approximation. The edges of the 
pieces are defined by thresholds associated with 
particular explanatory variables that determine which 
value of the predicted variable is to be assigned. The 
entire model is known as a “tree” because the 
threshold decisions are built up by considering a series 
of conditional statements which each define a split into 
two possible alternatives. Each of those alternatives 
has its own threshold-and-variable conditional 
statement which splits into two more possible 
alternatives. When depicted as a diagram, the model 
appears as a tree with several levels beginning with a 
single decision at the top with ever increasing numbers 
of branches reaching downward. By increasing the 
number of layers used in the tree, the researcher can 
build a more detailed approximation. The process of 
determining which variables and thresholds should be 
associated with each decision is known as “training” 
the tree. 

The flexibility in decision trees means that care 
must be taken to avoid obtaining unrealistically 
optimistic results. This is typically done by splitting 
the data into two or three distinct sets before beginning 
the analysis. The “training” set is usually the largest 
and is used for training the models being used (here, 

decision trees of various depths). The second set is 
called the “validation” set and is used once the models 
have been trained. The models are used to make 
predictions for the validation data and compared to the 
actual values. This allows an assessment how the 
models perform on data not used in their creation. 
Based on these error assessments, different models can 
be compared to determine the best one. With decision 
trees, the most important comparison is to determine 
the number of levels that performs best because an 
excessively deep tree will perform poorly on the 
validation set. Finally, sometimes a third “testing” set 
is kept separately from the training and validation sets 
in order to obtain a final unbiased estimate of the error 
or performance of the model that is chosen as the best. 
A third independent set of data is required because the 
validation set has already been used to compare 
between candidate models and thus may result in an 
optimistically biased error estimate. 

Examination of a trained tree provides insight into 
which explanatory variables influence the dependent 
variable the most. Clearly, if a particular variable is 
never used to make a “decision,” it is probably not a 
very important influence. On the other hand, variables 
that are important will appear frequently in the tree. 
Furthermore, we might assume that decisions made 
higher in the tree (the first few decisions on which the 
rest depend) are in some sense more important than the 
last few. These ideas can be used to define dominance 
scores that reflect the overall importance of a variable 
in the tree as compared to the others based on how 
often it appears and weighted by which levels it 
appears in. Similarly, the values for a single pixel can 
be run through the tree in order to see which variables 
are used in the decisions resulting in the final 
prediction. These provide both general assessments of 
the phenomenon as well as the local behavior for 
particular situations. 

The relative influence of each type of variable on 
the vegetation index was determined by computing the 
dominance scores for each and pooling them within the 
land cover, topography, soils, and meteorological 
categories. These summary Amandian Relative Global 
Dominance measurements are plotted in Fig. 3. 
Overall, the soil properties do not appear to be very 
important and do not change in their importance as the 
growing season progresses. Meteorology seems 
slightly more important and its importance only 
changes in that it appears to be less important during 
June and slowly increases in importance. Land cover 
appears to be the dominant driver during April 
(roughly as important as the other three types of 
explanatory variables combined), is conspicuously 
unimportant in May, and assumes a moderate 



importance that gradually declines during the 
remainder of the summer. The land cover is probably 
most important early in the season because of the 
differing growth patterns of evergreen trees as 
compared to deciduous trees in early spring. Finally, 
topography begins April as secondarily important to 
land cover, but switches in May to become the 
overwhelmingly dominant set of variables and 
continues to be so throughout the growing season. 

Another way to consider the relative importance of 
different drivers is to examine which variables are used 
in the decision tree for each location on the map. In 
Fig. 4, the maps show which types of variables are 
most important at each location by month. Based on 
the general measures of importance, it is not surprising 
that in May, the majority of the pixels show 
topography and meteorology as the primary influences. 
However, these maps show which areas within the 
Blue Ridge area have which dependencies. For 
example, the southern tip of the region and the eastern 
foothills are primarily driven by meteorology while the 
high mountains are most affected by topography. 
However, as the summer progresses, these drivers 
reverse and reverse again. That is, in June and July, the 
high mountains begin to be meteorologically driven 
while August and September show a return to 
topographical control. The eastern foothills show a 
similar pattern with meteorology losing its importance 
during the middle of the summer but regaining it in 
September. 
 

IV. CONTINENTAL SCALE PREDICTIVE MODELS OF 
VEGETATION 

 
The next major step was to perform a similar 

analysis using GeoLearn to construct a dataset for the 
entire continental United States. 

The data used were very similar to those used in the 
Blue Ridge analysis. The variable modeled was the 
EVI for the month of June. The explanatory variables 
were the same as those used in the Blue Ridge Region 
with the exception of the land cover categories, which 
were necessarily different due to the wider variety 
present across the continent. The land cover categories 
were: evergreen needleleaf forests, evergreen broadleaf 
forests, deciduous broadleaf forests, mixed forests, 
woodlands, wooded grasslands/shrublands, closed 
bushlands or shrublands, open shrubland, grasslands, 
and croplands. The data were divided into training 
(60%), and validation (40%) sets. 

The training set was used to train regression trees 
up to 20 levels and an ordinary least squares (OLS) 
linear model. Using the estimated models, the summed 
squared error for both subsets of the  data were 

computed.  For comparison, the errors were 
transformed into the root mean squared error to 
provide the typical error standard deviation around the 
predicted values. This provides a summary measure of 
performance for the models. These values are shown in  
Fig. 5 with the OLS results plotted as horizontal lines 
for comparison with the tree results. 

Fig. 3. Graphs showing how Amandian relative global dominance 
changes between months for land cover, topography, soils, and 

meteorology. The colors represent different depths of tree: red = 4 
levels, magenta = 14. From [1]. 

 

The summary statistics reveal a few interesting 
things. The OLS training and validation results and 
virtually identical and roughly equivalent to a tree of 
depth 6 (based on 5 decisions for any particular 
example). The tree performs better than the linear 
model and begins to overfit at about depth 14 with the 
validation error reaching a minimum at 17 levels. As 
context, the EVI in this dataset range from 0.1 to 1.0 
with a sample mean of about 0.28 and a sample 
standard deviation of 0.145 . 

Fig. 4. Maps showing which type of explanatory variable is most 
influential at each location. From [1]. 
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Examination of the trained models can provide 
insight into the most important influences on the EVI 
at the continental scale. For the linear model, two 
criteria were considered. First was the magnitude of 
the effect on the predicted EVI of a change in the 
explanatory variable. Since the model is linear, this is 
accomplished by inspection of the coefficients (called 
β). To avoid scale of measurement effects, the 
coefficients were rescaled by the sample standard 
deviation of their corresponding explanatory variables. 
However, large values for these rescaled coefficients 
can still be misleading if the data are not able to 
support a good estimate. Employing the statistical 
assumptions of the model, the uncertainty of 
estimation for each coefficient can be computed. The 
coefficients and the t-statistics measuring their 
likelihood of being different from zero are plotted in 
Fig. 6. Due to the large amount of data, almost all the 
parameters are “statistically significant,” but some are 
still clearly more certain than others. Note that the land 
cover was included as indicator variables for the 
different categories. The indicator for barren was 
excluded, and hence the estimated coefficients show 
the effect of the stated land cover as compared to the 
omitted category (barren). Hence, the land use 
coefficients are, for the most part, quite different from 

zero (indicating that they have a different effect than 
“barren”), but quite similar to each other. Considering 
both the magnitudes and the uncertainties, the most 
important variables seem to be: longwave radiation, 
shortwave radiation, precipitation, daytime 
temperature, nighttime temperature, soil pH, and 
possibly elevation. However, the day and nighttime 
temperatures have very nearly opposite coefficients. 
This could be due to a close linear correlation between 
the two. It is quite possible that they are so similar that 
only one should be included.  

Fig. 6.  Coefficient estimates and t-statistics for linear model. 
 

Fig. 5. Summary performance of regression trees and linear model. 
 

The regression trees can yield similar information 
using the approach discussed with the Blue Ridge 
analysis. Using the 17 level tree, the Amandian 
Relative Global Dominance is computed for each 
variable as shown in Fig. 7. The most influential 
variable is longwave radiation followed by 
precipitation, soil pH, shortwave radiation, nighttime 
temperature, elevation, and the indicator for open 
shrubland. The regression tree identifies almost the 
same set of important variables as the linear model. 
Notice that the regression tree only picks nighttime 
temperature but not daytime temperature. Regression 
trees are much less susceptible to multicollinearity 
problems than OLS regression so this is a further 
indication that only one of the two temperatures is 
actually meaningful. 
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Fig. 8. Summary performance of different numbers of clusters. 

 

Fig. 7.  Amandian Relative Global Dominance scores for 17 level 
tree. 

 

V. CONTINENTAL SCALE CLUSTER ANALYSIS 
 
Another approach to understanding the 

relationships between remotely sensed variables is not 
predictive, but associative. Fig. 9. Locations of clusters for two clusters. 

Using the tools in GeoLearn, continental scale 
datasets at one kilometer resolution are constructed for 
the following variables in the month of March: the 
Enhanced Vegetation Index (EVI), the Normalized 
Difference Vegetation Index (NDVI), the fraction of 
photosynthetically active radiation (FPAR), the leaf 
area index (LAI), emissivity, land surface temperature 
(LST), and albedo. The EVI, NDVI, and LAI are 
constructed measurements intended to reflect attributes 
of the plants being detected. The remaining variables 
measure various aspects of the incoming and outgoing 
radiation for each location which are thought to 
influence how well the plants grow. After cleaning, the 
final dataset consisted of about 5 million pixels. 

The data were analyzed using a cluster algorithm 
based on a modification of the standard k-means 
clustering approach. A mean-squared-error measure is 
used to assess how well the clusters are defined with 
the goal being to find the locations of the specified (k) 
number of clusters that minimize this summary error. 
The entire dataset was randomly broken into a training 
set (70% of the original data) and a validation set (the 
remaining 30%) to help assess whether the discovered 
clusters are spurious or reasonable. The training set is 
used to discover the clusters. After they have been 

defined, the validation data are assigned to the newly 
minted clusters. If there is a great discrepancy in the 
error for the training set and error for the validation 
set, then the clusters are not likely to be correct or 
useful. 

Fig. 10. Locations of clusters for three clusters. 

Once clusters have been identified, each pixel can 
be annotated with which cluster it belongs to, resulting 
in a map showing the geographic locations of the 
members of each cluster (which are based on solely 
non-geographic data).  



Fig. 8 shows how the error decreases as the number 
of clusters is increased. The major improvements are 
realized when forming two and three clusters. Looking 
for more clusters improves the performance, but not in 
a very convincing way. 

Fig. 9, Fig. 10, and Fig. 11 show where these 
clusters are located across North America. It is 
interesting that the clusters seem to have fairly distinct 
geographical boundaries even though geographic 
information is not provided in the analysis of the 
clusters.. The first two clusters (Fig. 9) show up 
geographically with the Midwest and Mountain West 
along with a sliver along the Mississippi River in the 
red cluster and the Pacific Coast grouped with the 
South and a bit of the extreme northeast of New 
England comprising the blue cluster. When three 
clusters were generated (Fig. 10), geographically, the 
same regions appear: the blue cluster from the two-
cluster-regime is virtually the same as the red cluster in 
the three-cluster-regime. The old red cluster is split 
basically north/south. The four-cluster regime (Fig. 11) 

again shows the same regions with the original blue 
cluster being split this time into roughly coastal and 
interior regions. 

  
VI. CONCLUSIONS 

 
This project has expended considerable effort to 

build tools able to handle the large amount of remotely 
sensed data that has been largely untapped for 
scientific analysis beyond descriptive techniques. This 
paper has shown two approaches (predictive and 
clustering) to analyzing data related to regional and 
continental scale influences of vegetation growth. Fig. 11. Locations of clusters for four clusters. 
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